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1. Introduction

Steady-state response with respect to base movement of a viscoelastically supported cantilever
beam is analyzed. The principle of relative motion is used to investigate the steady-state response
of a viscoelastically supported cantilever beam. The Lagrange equations are used to examine the
free vibration characteristics of an elastically supported cantilever beam and the steady-state
response to a sinusoidally varying base excitation of a viscoelastically supported Bernoulli–Euler
cantilever beam. The constraint condition against rotation of the supported end is taken into
account by using Lagrange multipliers. In the study, for applying the Lagrange equations, the trial
function denoting the deflection of the beam is expressed in polynomial form. By using the
Lagrange equations, the problem is reduced to the solution of a system of algebraic equations.
The influence of the damping and stiffness parameters on the steady-state response of the
viscoelastically supported cantilever beam is investigated numerically for sinusoidally varying
base movement for various damping and stiffness parameters. The results are given for the first
two natural frequency ranges. Convergence studies are made. The validity of the obtained results
is demonstrated by comparing them with exact solutions based on the Bernoulli–Euler beam
theory obtained for the special cases of the investigated problem.
This problem is of considerable interest to the engineers designing structural and mechanical

systems such as chimneys of plants, communication towers, manipulator arms and many
others. As it is known, vibration damping is very important in engineering practice. In some cases,
see front matter r 2004 Elsevier Ltd. All rights reserved.
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the damping treatments at the boundary supports can be an alternative solution to
surface damping treatments with viscoelastic materials for beams and plates: For example,
Fan et al. [1] proposed a method of analysis for the forced vibration of a beam with viscoelastic
boundary supports based on complex normal mode analysis. Jacquot [2] developed a
method to predict the stationary random response of a beam which has been modified by the
attachment of a damped, lumped assembly of linear mechanical elements. Jacquot [3] investigated
the forced random vibration of a cantilever beam with either a viscous damper or a damped
dynamic vibration absorber attached at the tip to provide energy dissipation to suppress
the randomly excited motions. Jacquot [4] studied optimal damper location for randomly
forced cantilever beams. The steady-state response to a sinusoidally varying force was determined
for a viscoelastically point-supported square or rectangular plate by Yamada et al. [5] by
using the generalized Galerkin method. A generalization of this study to orthotropic rectangular
plates was investigated by Kocatürk [6]. The steady-state response of a viscoelastically
point-supported specially orthotropic square or rectangular plate was determined by Kocatürk
and Altıntas- [7] by using an energy-based finite difference method. Vibration of
orthotropic rectangular plates having viscoelastic point supports at the corners under the effect
of sinusoidally varying concentrated moment is analyzed by Kocatürk et al. [8] by using the
Lagrange equations.
In the present study, the problem is analyzed by using the Lagrange equations with the trial

function in the polynomial form denoting the deflection of the plate for determining the peak
values of the displacements of the tip of the viscoelastically supported cantilever beam excited by
the base movement. The constraint condition against rotation of the supported end is taken into
account by using Lagrange multipliers.
The problem considered is solved within the framework of the Bernoulli–Euler beam theory.

The convergence study is based on the numerical values obtained for various numbers of
polynomial terms. In the numerical examples, the steady-state responses to a sinusoidally varying
force are determined for the first two peaks of the tip displacements and support reactions. The
accuracy of the results is partially established by comparison with previously published accurate
results for the special cases of the considered problem.
2. Analysis

Consider a viscoelastically supported elastic cantilever beam of length L and cross-section
area A under base excitation effect at the end constrained against rotation as shown in Fig. 1,
where k is the spring constant, c is the damping coefficient. The coordinate axis OX 1

oriented along the axis of the beam with the origin at O. Because the horizontal part of the
beam is shown only to describe that the beam is constrained against rotation at the lower end,
the mass of this part is not taken into account. There are no friction forces between the base
and the beam system. The constraint condition against rotation of the supported end is taken
into account by using Lagrange multipliers. Under the above-mentioned conditions, the
steady-state responses of the viscoelastically supported cantilever beam to a sinusoidally
varying base movement for various damping and stiffness values will be determined by
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Fig. 1. Viscoelastically supported elastic cantilever beam under base excitation effect at the end constrained against

rotation.
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using the Lagrange equations. The relative displacement is defined as follows:

W ðX 1; tÞ ¼ UT ðX 1; tÞ � UGðtÞ; (1)

where UT ðX 1; tÞ is total displacement, UGðtÞ is base displacement. For a beam undergoing
sinusoidally varying base movement, it can be defined that UGðtÞ ¼ ŪGe

iot; where o is radian
frequency, ŪG is the amplitude of the base displacement. The strain energy of bending in
Cartesian coordinates is given by

U ¼
EI

2

Z L=2

�L=2

q2W

qX 2
1

� �2

dX 1; (2)

where E is Young’s modulus, I is the second moment of area of the cross-section of the beam, W is
the complex amplitude of the steady-state response relative to the excitation movement UGðtÞ:
With rotary inertia neglected, the kinetic energy of the vibrating plate is

T ¼
1

2

Z L=2

�L=2
m

qUT

qt

� �2

dX 1; (3)
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where m is the mass of the beam per unit length. The additive strain energy and dissipation
function of viscoelastic support are

Fs ¼
1
2

ks UTS � UGð Þ
2;

D ¼ 1
2

cs
_UTS � _UG

� �2
;

(4)

where UTS; _UTS are total displacement and total velocity of the supported end of the beam. The
functional of the problem is

J ¼ T � ðU þ FSÞ: (5)

Introducing the following nondimensional parameters:

x1 ¼
X 1

L
; w̄ðx1; tÞ ¼ W=L; ūT ðx1; tÞ ¼ UT=L; ūGðtÞ ¼ UG=L; (6)

the above energy expressions can be written at any time t as

U ¼
EI

2L

Z 1=2

�1=2

q2w̄
qx2

1

� �2

dx1; (7a)

U ¼
mL3

2

Z 1=2

�1=2

qūT

qt

� �2

dx1; (7b)

Fs ¼
ksL

2

2
ūTS � ūGð Þ

2; D ¼
csL

2

2
_̄uTS � _̄uG

� �2
: (7c,d)

It is known that some expressions satisfying the geometrical boundary conditions are chosen for
w̄ðx1; tÞ and by using the Lagrange equations, the natural boundary conditions are also satisfied.
For applying the Lagrange equations, the trial function w̄ðx1; tÞ is approximated by space-
dependent polynomial terms x0

1; x
1
1;x

2
1; . . . ; x

N
1 and time-dependent generalized displacement

coordinates ānðtÞ: Thus,

w̄ðx1; tÞ ¼
XN

n¼0

ānðtÞx
n
1; (8)

where w̄ðx1; tÞ is the relative steady-state response (the relative transverse deflection) of the beam
to a sinusoidally varying base motion

UGðtÞ ¼ ūGL ¼ uGe
iotL: (9)

Each term xn
1 must satisfy the geometrical boundary conditions. The constraint condition of the

support is satisfied by using the Lagrange multipliers. Therefore, it is not necessary at first for
these functions to satisfy the geometrical boundary conditions. As it is known, there is no need for
these functions to satisfy the natural boundary conditions. However, if the natural boundary
conditions were also satisfied when selecting the functions, then the rate of convergence would be
high. The only constraint condition for the considered problem is

bW 0ðX 1SÞ ¼ 0; (10)



ARTICLE IN PRESS

T. Kocatürk / Journal of Sound and Vibration 281 (2005) 1145–1156 1149
where X 1S denotes the location of the support, prime denotes the derivative with respect to X 1: In
Eq. (10), b is the Lagrange multiplier and in the considered problem it is support moment reacting
against the rotation of the supported end of the beam. The Lagrange multiplier formulation of the
considered problem requires us to construct the Lagrangian functional

J� ¼ J þ bW 0ðX SÞ (11)

which attains its stationary value at the solution ðW ; bÞ: Then, after introducing

āNþ1 ¼ b (12)

application of the Lagrange equations,

qJ�

qāk

�
d

dt

qJ�

q _̄ak

þ QD ¼ 0; k ¼ 0; 1; 2; 3; . . . ;N þ 1; (13)

where the overdot stands for the partial derivative with respect to time, QD is the generalized
damping force expressed as

QD ¼ �
qD

q _̄ak

; k ¼ 0; 1; 2; 3; . . . ;N þ 1; (14)

yields a set of linear algebraic equations. Introducing the following nondimensional parameters:

k ¼
kL3

EI
; g ¼

cL

EI
; l2 ¼

mo2L4

EI
(15)

and considering that when the base motion is expressed as in Eq. (9), then the time-dependent
generalized functions can be expressed as follows:

ānðtÞ ¼ ane
iot: (16)

In Eq. (16), an is a complex variable containing a phase angle. The dimensionless complex
amplitude of the displacement of a point of the beam can be expressed as

wðx1Þ ¼
XN

n¼0

anxn
1: (17)

Using Eq. (13) by taking into account Eq. (1), a set of linear algebraic equations is obtained which
can be expressed in the following matrix form:

½A	fang þ ilg½B	fang � l2½C	fang ¼ fqg; n ¼ 0; 1; 2; 3; . . . ;N þ 1; (18)

where ½A	; ½B	 and ½C	 are coefficient matrices obtained by using Eq. (13), fag is the vector
representation of the elements of an; and the elements of the generalized force fqg are expressed as

qk ¼ uGl
2

Z 0:5

�0:5
xk
1 dx1; k ¼ 0; 1; 2; 3; . . . ;N þ 1: (19)

For free vibration analysis, when the base motion and damping of the supports are zero in Eq.
(19), this situation results in a set of linear homogeneous equations that can be expressed in the
following matrix form:

½A	fang � l2½C	fang ¼ f0g: (20)
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The maximum displacement of the tip of the beam is

wð0:5Þ ¼
XN

n¼0

an0:5
n: (21)

The dimensionless horizontal reaction force at the base is

R ¼ ðkþ iglÞwð�0:5Þ: (22)

The number of unknown coefficients is ðN þ 2Þ: Again, the number of equations which can be
written by using Eq. (13) is ðN þ 2Þ; which is given in matrix form by Eq. (18). Therefore, the total
number of these equations is equivalent to the total number of unknown displacements and these
unknowns can be determined by using the above-mentioned equations.
3. Numerical results

The steady-state response of a cantilever beam to a base motion UGðtÞ ¼ uGe
iotL;

viscoelastically supported at the base, is calculated numerically. In the numerical calculations,
dimensionless amplitude of the base movement is taken as uG ¼ 0:1:
As far as the author knows, there are no existing results on viscoelastically supported cantilever

beam under the effect of sinusoidally varying base motion. Therefore a short investigation of the
free vibration of a rigidly supported (k ¼ 1) cantilever beam is made for comparing the obtained
results with the existing exact results of free vibration characteristics of the cantilever beam. Also,
the natural frequencies of an elastically supported beam are determined for various values of
stiffness parameter. The natural frequencies of elastically supported cantilever beam are
determined by calculating the eigenvalues l of the frequency Eq. (20). It is possible to simulate
infinite lateral support stiffness by setting the translational stiffness coefficient equal to 1 108 at
the support for comparing the obtained results with the existing results of a rigidly supported
cantilever beam. In Table 1, the calculated frequency parameters l are compared with those of
Timoshenko and Young [9] and the convergence is tested by taking the number of terms ðN þ

1Þ ¼ 3; 6; 9; 12: It is seen that the present converged values show excellent agreement with those of
Timoshenko and Young [9].
It is observed from Table 1 that, the frequency parameter decreases as the number of the

polynomial terms increases. It means that the convergence is from above. Convergence study
indicates that the calculated values are converged to within five significant figures.
From here on, in the calculation of the results of the present study, 12 terms of the polynomial

series are used, namely the size of the determinant is 13 13.
When increasing the stiffness parameter k; the frequency parameters increase monotonically

and ultimately become the value of a rigidly supported cantilever beam.
For determining the mode shapes of the vibration, for the considered eigenvalue, a coefficient is

taken as known in Eq. (20), then the other coefficients are determined according to this known
coefficient. After that, by using Eq. (17), the mode shape of the considered vibration can be
determined. The tip displacements of the cantilever beam are determined for various damping
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Table 1

Convergence study of frequency parameters l and comparison of the obtained results with the existing exact results for

the special case (k ¼ 1) of the problem

Determinant size Peak 1 Peak 2

k ¼ 50

3 3 3.98604 11.90006

6 6 3.25710 11.30717

9 9 3.25710 11.30545

12 12 3.25710 11.30545

k ¼ 100

3 3 4.22448 15.87935

6 6 3.38431 14.30891

9 9 3.38430 14.30213

12 12 3.38430 14.30213

k ¼ 400

3 3 4.40997 30.42289

6 6 3.48279 19.54710

9 9 3.48278 19.49325

12 12 3.48278 19.49325

k ¼ 1 � 108

3 3 4.47214 —

6 6 3.51602 22.15783

9 9 3.51602 22.03449

12 12 3.51602 22.03449

Timoshenko and Young [9] (exact) 3.51602 22.03449

k ¼ 1
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parameters g for various values of k by using Eqs. (17) and (18). The dimensionless reaction forces
R are obtained for various damping parameters g for various values of k by using Eqs. (17), (18)
and (22).
Figs. 2a–f shows the tip displacements for various values of g; for k ¼ 25; 50; 75; 100; 200; 400;

respectively. It is seen in Figs. 2a–f that resonant peaks appear and also antiresonant peaks or
lowest values appear between adjacent peaks. In Figs. 2 and 5, the solid lines represent the
response curve of a beam with undamped elastic support in which g ¼ 0; and the dotted lines
represent the response curve of a beam with viscoelastic support in which g ¼ 15: The points of
intersection of these two lines are fixed points, through which all the response curves pass,
regardless of the damping parameters. By choosing a suitable value for the damping parameter g;
it is possible to reduce the peak values of the tip displacements and of the reaction forces to the
values of the related quantities which correspond to the intersection points shown in Figs. 2a–f
and 5a–f. Existence of such points is useful for an optimum design of a system by choosing
appropriate damping parameter for each stiffness value. By choosing appropriate damping
parameters, resonant peaks of the tip displacements and reaction forces disappear and the related
peak quantities become small. Within a certain range of the frequencies, the tip displacements
becomes very small, which indicates the possibility of vibration isolation.
In Table 2, the frequencies at which the peak values of the tip displacements for the considered

frequency range occur are determined for various damping parameters g for k ¼

25; 50; 75; 100; 200; 400 by using Eqs. (18) and (17). The dash sign (-) in Table 2 shows that
there is no resonant peak for the considered parameters.
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Fig. 2. The tip displacements with the variation of l for various values of g; for (a) k ¼ 25; (b) k ¼ 50; (c) k ¼ 75; (d)
k ¼ 100; (e) k ¼ 200; (f) k ¼ 400: g ¼ 0 ——, g ¼ 5 – – – , g ¼ 10 – � – � – , g ¼ 15 � � � � � � .
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In Table 3, the minimum peak values, the corresponding frequencies and damping values are
given for k ¼ 25; 50; 75; 100; 200; 400 for two peaks of the tip displacements. In Table 4, the
minimum peak values, the corresponding frequencies and damping values are given for k ¼

25; 50; 75; 100; 200; 400 for two peaks of the support reactions. It is seen from Tables 3 and 4 that,
the frequencies for peak values of tip displacements and reaction forces are a little different from
each other. For very low and high values of g; the frequencies for peak values of center tip
displacements and reaction forces become equal to each other. It is interesting to note that the
minimum peak values of reactions of peaks 1 and 2 are equal to each other and increase linearly
with the increase of k as can be seen from Table 4.
When g and k are both zero, then, it is obvious that the tip displacement is zero because of zero

friction between the base and beam system. In the case of great k values, the viscoelastically
supported cantilever beam behaves like rigidly supported cantilever beam. It is seen from Figs.
2a–f that with the increase in the stiffness parameter k; the optimum damping parameter g
increases also and therefore the effect of the damping parameter g on the response curves
decreases. This situation is more pronounced for the lower frequencies for tip displacements as it
can be deduced from Figs. 2a–f. Although it is not shown explicitly in the figures, a similar
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Table 2

The frequencies at which the peak values of the force transmissibilities occur for various values of dimensionless

damping and stiffness values

Peaks g ¼ 0 g ¼ 5 g ¼ 10 g ¼ 15 g ¼ 20 g ¼ 25 g ¼ 30

k ¼ 25

First peak 3.022 3.157 3.353 3.438 3.472 3.488 3.496

Second peak 8.934 — 20.585 21.526 21.768 21.868 21.920

k ¼ 50

First peak 3.257 3.282 3.338 3.392 3.431 3.456 3.472

Second peak 11.305 — 19.461 21.226 21.618 21.777 21.859

k ¼ 75

First peak 3.341 3.349 3.371 3.397 3.422 3.443 3.458

Second peak 32.972 12.341 18.403 20.922 21.468 21.687 21.798

k ¼ 100

First peak 3.384 3.388 3.398 3.412 3.427 3.441 3.454

Second peak 14.302 14.058 17.899. 20.637 21.321 21.597 21.737

k ¼ 200

First peak 3.450 3.450 3.452 3.3454 3.457 3.460 3.464

Second peak 17.292 17.452 18.511 19.992 20.850 21.278 21.511

k ¼ 400

First peak 3.483 3.483 3.483 3.483 3.484 3.484 3.485

Second peak 19.493 19.578 19.837 20.229 20.639 20.978 21.230

Table 3

The minimum peak values, corresponding frequencies and damping values for k ¼ 25; 50; 75; 100; 200; 400 for two

peaks of the tip displacements

k ¼ 25 k ¼ 50 k ¼ 75 k ¼ 100 k ¼ 200 k ¼ 400

Peak 1

l 3.281 3.391 3.431 3.451 3.483 3.499

g 7.787 14.850 21.940 28.980 60.585 102.000

wt 1.0526 2.0749 3.1051 4.1362 8.187 16.4526

Peak 2

l — 12.566 14.650 15.620 18.930 20.550

g — 8.330 8.100 8.352 11.150 18.875

wt — 0.2098 0.2302 0.2565 0.3987 0.7493
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situation is valid for large values of g: When the value of g is too large, then the effect of the
stiffness coefficient k is negligible on the behavior of the system.
Figs. 3 and 4 show that with the variation of the damping parameter g; a damping parameter

can be obtained for which the first and second peak values of the tip displacements respectively
are minimum. The peak values of the tip displacements occur at different values of l while
changing the damping parameter g: However, the frequency parameter l remains between the
frequency parameters l obtained for g ¼ 0 and g ¼ 1: Therefore, in Figs. 3 and 4, while changing
g for obtaining minimum peak value of the force transmissibility for the considered mode, the
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Table 4

The minimum peak values, corresponding frequencies and damping values for k ¼ 25; 50; 75; 100; 200; 400 for two

peaks of the support reaction forces

k ¼ 25 k ¼ 50 k ¼ 75 k ¼ 100 k ¼ 200 k ¼ 400

Peak 1

l 3.257 3.385 3.419 3.440 3.480 3.499

g 7.621 14.847 21.222 27.051 61.323 87.473

R 5.000 10.000 15.000 20.000 40.000 80.000

Peak 2

l 11.306 14.302 16.109 17.292 19.493 20.753

g 2.215 3.497 4.660 5.785 10.265 19.300

R 5.000 10.000 15.000 20.000 40.000 80.000

Fig. 3. The first peak tip displacements for various values of g for (a) k ¼ 50; (b) k ¼ 100:

Fig. 4. The second peak tip displacements for various values of g for (a) k ¼ 50; (b) k ¼ 100:
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frequency parameter l also changes a little. As it was explained before, l changes between l
obtained for g ¼ 0 and l obtained for g ¼ 1: It is seen in Figs. 2a–f and 5a–f that, regardless of
the damping parameters, there are some points of intersection of the transverse deflection curves
of the tip of the beam and support reactions of the beam. The optimum values of g for the tip
displacements are shown in Figs. 3 and 4 only for k ¼ 50 and k ¼ 100: Similar figures can be
obtained for the other values of k for the tip displacements and for the reaction forces.
Although there can be found an optimum damping parameter for each stiffness parameter, as it

can be seen from Tables 3 and 4, increase in the stiffness parameter causes increase in the



ARTICLE IN PRESS

Fig. 5. The reaction forces with the variation of l for various values of g for (a) k ¼ 25; (b) k ¼ 50; (c) k ¼ 75; (d)
k ¼ 100; (e) k ¼ 200; (f) k ¼ 400: g ¼ 0 —— , g ¼ 5 – – – , g ¼ 10 – � – � – , g ¼ 15 � � � � � � .
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minimum peak values of the tip displacements. Therefore, in designing such systems, the stiffness
parameter should be chosen as small as it could be by considering the permitted relative
displacement of the lower end of the beam.
4. Conclusions

By using the Lagrange equations, the first two natural frequencies of elastically supported
cantilever beams and the steady-state response of a viscoelastically supported cantilever beam to a
sinusoidally varying base movement has been studied. The obtained natural frequencies for the
rigidly supported cantilever beam are compared with the exact results. To use the Lagrange
equations with the trial function in the polynomial form and to satisfy the constraint condition by
the use of Lagrange multipliers is a very good way for studying the structural behavior of
viscoelastically supported cantilever beams. For the same accuracy level, it needs considerably
fewer degrees of freedom than the finite element method and energy-based finite difference
method as it was demonstrated by Kocatürk et al. [8].
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By the application of the above-mentioned solution technique, the first two values of the
natural frequencies are determined, the convergence characteristics of the frequency parameters
are investigated numerically. It is seen that the rate of convergence is very high. The response
curves to a sinusoidally varying base movement are determined numerically for viscoelastically
supported cantilever beams. The effect of the viscosity and stiffness of the support of the
cantilever beam on response curves is investigated and shown in the figures and tables.
All of the obtained results are very accurate and may be useful for designing structural and

mechanical systems subject to base motion.
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